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Abstract

Study Objectives: Integrated analysis of heart rate (electrocardiogram [ECG]) and body movements (actimetry) during sleep in healthy subjects have previously
been shown to generate similar evaluation of sleep architecture and continuity with Somno-Art Software compared to polysomnography (PSG), the gold standard.
However, the performance of this new approach of sleep staging has not yet been evaluated on patients with disturbed sleep.

Methods: Sleep staging from 458 sleep recordings from multiple studies comprising healthy and patient population (obstructive sleep apnea [OSA], insomnia, major
depressive disorder [MDD]) was obtained from PSG visual scoring using the American Academy of Sleep Medicine rules and from Somno-Art Software analysis on
synchronized ECG and actimetry.

Results: Inter-rater reliability (IRR), evaluated with 95% absolute agreement intra-class correlation coefficient, was rated as “excellent” (ICC, s, > 0.75) or “good”
aasvgosy, = 0:43,1CC, ., o, = 0.56) and N3 sleep in

=0.59) rated as “fair” IRR. Overall sensitivity, specificity, accuracy, and Cohen’s kappa coefficient of agreement (x) on the entire sample were

(ICC, s pygos9, > 0.60) for all sleep parameters assessed, except non-REM (NREM) and N3 sleep in healthy participants (ICC
OSA patients (ICC,, , .os,
respectively of 93.3%, 69.5%, 87.8%, and 0.65 for wake/sleep classification and accuracy and k were of 68.5% and 0.55 for W/N1+N2/N3/rapid eye movement (REM)

classification. These performances were similar in healthy and patient population.

Conclusions: The present results suggest that Somno-Art can be a valid sleep-staging tool in both healthy subjects and patients with OSA, insomnia, or MDD. It could
complement existing non-attended techniques measuring sleep-related breathing patterns or be a useful alternative to laboratory-based PSG when this latter is not available.

Statement of Significance

The development of wearable devices and algorithms to monitor and stage sleep in long-term or ambulatory settings is rising. However, most of the devices on the
market today lack robust validation studies, especially in patient populations, and thus cannot be considered as good and reliable alternative to the gold standard,
polysomnography. This validation study of an automatic cardiac and movement-based sleep scoring algorithm shows promise as a valuable aid for diagnosis and

treatment-follow-up of sleep disorders and disturbances in the patients’ living environment.
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Introduction

Polysomnography (PSG) is the gold standard for objective
sleep monitoring and the diagnosis of many sleep disorders.
PSG, composed mainly of an electroencephalogram (EEG),
an electro-oculogram (EOG), and an electro-myogram (EMG),
is cumbersome and time-consuming to set up and is there-
fore costly and with limited access (long waiting lists and
some large geographical areas are poorly equipped). For these
reasons, PSG is generally limited to a maximum of one or two
recording nights in the sleep laboratory. In parallel, the evalu-
ation of sleep architecture and continuity consists in the visual
scoring of 30-sec epochs PSG recordings based on the standard
adopted by the health care institutions, the American Academy
of Sleep Medicine (AASM) manual [1]. Visual scoring is a tedious
task and several studies reported an inter-rater reliability (IRR)
under 85% [2-5].

Therefore, the development of new technologies to respond
to these limitations of PSG could facilitate and improve clin-
ical evaluation of sleep disturbances. Indeed, insomnia is often
diagnosed based only on nonobjective tools such as the clin-
ical interview, questionnaires, or sleep diary which are much
easier to obtain than PSG. Even if these nonobjective tools are
useful and necessary to guide the diagnosis, objective sleep
monitoring is mandatory to detect potential associated sleep
disorders and may deliver information not inherent in the sub-
jective patient report such as detecting sleep state mispercep-
tion. Furthermore, nonobjective tools often overestimate the
symptoms compared to objective measures [6]. The diagnosis
of insomnia, therefore, would benefit from several successive
recording nights to be reliably evaluated. In addition, at-home
sleep recording would avoid confounding factors specific to the
sleep laboratory settings such as the first night effect, and re-
flect more accurately the normal environment in which the pa-
tient is living [7-9]. Diagnosis of sleep apnea syndrome would
also benefit from an ambulatory sleep staging system to supple-
ment ambulatory respiratory polygraphy that does not discrim-
inate between wake and sleep states, leading to misestimation
of total sleep time (TST) and therefore of the apnea-hypopnea
index (AHI). A new wave of research focuses on the detection of
sleep independently of brain electrical activity (EEG), in adopting
a multisensory approach based on the knowledge that auto-
nomic variables such as heart rate and its variability are sleep
stage-dependent [10-12]. However, most of the wearable devices
on the market today lack of robust validation studies and cannot
be considered as good and reliable alternatives to PSG [13]. In
2016, Muzet et al. validated in healthy volunteers the Somno-Art
Software against PSG [14]. Somno-Art Software evaluates sleep
architecture and continuity from an integrated analysis of heart
rate and body movements. This study found an excellent intra-
class correlation (according to Cicchetti [15] cutoffs) between
Somno-Art Software and PSG for the combination of 12 sleep
architecture and continuity descriptors (i.e. sleep efficiency [SE],
sleep latency [SL], REM sleep) useful for the clinician in the diag-
nosis and quantification of treatments (both pharmacological
and interventional).

Sleep disorders such as insomnia or obstructive sleep apnea
(OSA) affect sleep architecture and continuity, complicating the
visual scoring [2, 3, 16] and leading to lower IRR compared to
healthy adults [2, 3, 17]. Therefore, most of the wearable devices
based on cardiac and body movement or EEG signals are so far
exclusively or mostly validated in healthy populations [18-20].

The aim of the data presented here is to evaluate the per-
formance of the new approach of sleep staging of Somno-Art
Software based on heart rate and body movement, on disturbed
sleep architecture and continuity. To do so, sleep recordings
coming from healthy subjects and patients suffering from OSA,
insomnia, or major depressive disorder (MDD) were analyzed.
It is hypothesized that Somno-Art Software performances on
healthy and pathological populations will be similar.

Methods
Dataset

Source studies.
The dataset used for this research is based on data collected
from six studies.

Recording nights from healthy subjects were acquired from
two studies. Study 1 primary objective was to investigate rela-
tionship between daytime activity and night sleep structure and
the impact of noise on sleep patterns. Study 2 primary objective
was to investigate the effect of light on sleep, wake, EEG, and
cognitive performances as a function of homeostatic sleep drive.
All recorded nights from these two studies were included in the
dataset.

Recording nights from patients were acquired from four
studies.—The OSA study included patients diagnosed with
OSA syndrome—The insomniac study and the two depression
studies’ primary objectives were to evaluate the efficacy, safety,
and tolerability of investigational drugs. Only pretreatment
nights were included in the dataset. For all studies included in
the present analysis and before undergoing sleep recordings,
a standard screening of patients and healthy subjects’ health
status was done. More information on the protocol descriptions
are detailed in Supplementary 1.

All study protocols were approved by institutional review
boards in accordance with the Declaration of Helsinki and
the guidelines on Good Clinical Practice. Written consent was
obtained from all participants according to local requirements.

Participants.

All subjects were free of any drug or medication that could af-
fect sleep. Patients were diagnosed with OSA based on the AHI
(=5 [21]). Insomnia was diagnosed with the Insomnia Severity
Index (> 15). MDD patients fulfilled diagnostic and statistical
manual-4 or -5 criteria (using MINI 6.0 or 7.0) and had a score
> 30 on the Inventory of Depressive Symptomatology (IDS-
C30) or on the Montgomery-Asberg Depression Rating Scale
(MADRS) and a score > 4 (markedly ill or worse) on the Clinical
Global Impressions Severity Scale (CGI-S).

From a pool of 509 nights from 267 subjects, 458 recording
nights from 246 subjects were included in the dataset after re-
moving recordings that could not be analyzed due to Somno-Art
Software limitations: recording nights with a time in bed under
5 h, recording nights with periodic movements, or recording
nights with long R-R signal loss. In total 79 nights from 26
healthy participants (up to five nights/subject), 33 nights from 30
patients with OSA (up to two nights/subject), 135 nights from 66
patients with insomnia (up to three nights/subject), and 211
nights from 124 patients with MDD (up to two nights/subject)
were included in the analysis. Other demographic and baseline
information of each study group are presented in Table 1.
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Raw dataset Final dataset

Study group Subjects Nights Subjects Nights Data loss* Age F/M ratio AHI

N N N N % Mean + SD Mean + SD
Healthy 26 83 26 79 4.82 25+5.8 13/13 NA
OSA patient 36 39 30 33 15.38 54 + 14 12/18 23+18
Insomniac 68 150 66 135 10.00 44 + 14 44/22 NA
Depressed 137 237 124 211 10.97 46 + 13 83/41 NA
All subjects 267 509 246 458 10.02 44 + 15 152/94 NA

Number of subjects and nights for the raw and the final dataset, mean (+SD) age, and female/male (F/M) ratio of subjects by study, mean (+SD) apnea-hypopnea index

(AHI) of the OSA group.
NA, not available.
*Recording nights not analyzable by Somno-Art Software.

Study design

All the recordings combined standard PSG with ECG and
actimetry recordings.

PSG.

Multiple PSG recording systems were used in the various
studies (Compumedics ProFusion PSG 3; Compumedics Siesta
802a [Compumedics, Abbotsford, Australia]) but all had at least
six EEG derivations (C3-A2, C4-Al, F3-A2, F4-A1, 01-A2, 02-A1l),
two EOG electrodes, two chin EMG, and two ECG electrodes. All
PSG recorded data were converted into European Data Format
to be processed on a computer screen for visual analysis and
scoring [22].

Sleep staging was performed according to the AASM rules
and the resulting reference classes were obtained by combining
N1 and N2 into a single “N1 + N2” class while the remaining
classes (wake, N3, and REM) were unchanged. The nights from
the healthy and the OSA subjects were scored by experienced
scorers, 1 per study. The insomnia and the depression studies
were scored by an independent expert scorer of the Siesta Group
(Vienna, Austria) using the computer-assisted Somnolyzer soft-
ware [23].

Cardiac activity from ECG.

Cardiac beats position was extracted from the PSG ECG lead
with Medilog Darwin v2.8. To avoid misdetection, periods
without signal were excluded, no other beat correction were
applied (artifacts and ectopic beats were left as is). Successive
inter-beats intervals (R-R intervals) were then computed from
this continuous series of beats. Heart rate data were calculated
from R-R intervals as HR = 60/RR (in seconds) and then interpol-
ated at 1 Hz.

Wrist movement from actimetry.

Nondominant wrist movement activity was recorded using
ActiGraph (Actigraph LLC, Pensacola, FL) activity monitor. Raw
data were filtered and accumulated every second. The wrist
actimetry was measured through the vector magnitude of accel-
erations obtained every second in the three dimensions of the
space and its value is given in counts per second.

Somno-Art Software.
To perform Somno-Art Software 2.6.0 [3.1.0] analysis, a precise
synchronization of the actimetry and the PSG ECG signal was

achieved. A visual inspection to confirm that some occurring
events such as cardiac arousals (sudden increase in heart rate
followed by a return to initial values) were associated with wrist
movements was performed.

Using heart rate at a beat-to-beat resolution and actimetry
data at a 1 Hz resolution, sleep stage classification (wake, N1+N2,
N3, REM) was performed at a 1-s epoch resolution. The latter 1-s
epoch classification was merged into 30-s epochs to be com-
pared to visual scoring. To do so, the more prevalent stage, or the
first occurring stage when equally represented, was selected.

The sleep classification algorithm is based on the detection
and quantification of physiological events such as movements
or cardiac arousals in association with Support Vector Machine
(SVM) detectors. SVM detectors were trained on a pool of re-
cording nights (3 to 5 recordings, depending on the detector),
optimized on 123 recording nights, and tested on a pool of
118 recordings. In a final step, the sleep stage classification is
fine-tuned by more than 40 expert rules to better discriminate
transition phases. More information on the data processing
methodology is described in Muzet et al. [14].

Statistical analysis

Based on the guidelines edited in SLEEP after the 2018 inter-
national biomarkers workshop on wearables in sleep and cir-
cadian science, recommended statistical tools described in
Table 3: Guidelines for performing and interpreting results from de-
vice validation of sleep and circadian metrics (descriptive statistics,
Bland-Altman plot, epoch-by-epoch (EBE) analysis [sensitivity,
specificity, confusion matrix]), were used to evaluate the agree-
ment of the Somno-Art Software to PSG [13].

Sleep parameter analysis.

Derived from the sleep stage classification, the following AASM
sleep-wake statistics were computed: TST, SE, wake after sleep
onset (WASO), and SL. In addition, latency to persistent sleep
(LPS), defined as the elapsed time between lights-off and the
first occurrence of continuous 10 min in any sleep stage, and
REM sleep latency (REML), defined as the elapsed time be-
tween sleep onset and the first occurrence of REM sleep were
computed.

To take into consideration the multiple nights from the same
subject, the mean sleep parameters of each subject were cal-
culated and only one data point per subject was used for the
analysis.
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The IRR between Somno-Art Software and the visual scorer
was assessed for all sleep parameters (TST, SE, WASO, SL, LPS,
REML, wake, N1 + N2, N3, NREM, and REM sleep) in calculating
absolute agreement intra-class correlation coefficient (ICC,,, .
the degree of absolute agreement for measurements) using two-
way mixed model with “subject” as a random effect and “rater”
as a fixed effect [24]. 95% ICC,,, were estimated after 5% outlier
data trimming (based on PSG visual scorer versus Somno-Art
Software differences) procedure using 2.5% two-sided approach.
An ICC estimate of 1 indicates perfect agreement and 0 indi-
cates only random agreement (values increase by one method
and decrease by another method, nondirectional). Cicchetti [15],
provides commonly cited cutoffs for qualitative ratings of agree-
ment based on ICC values 0-0.39: “poor” agreement; 0.40-0.59:
“fair” agreement; 0.60-0.74: “good” agreement; 0.75-1: “excel-
lent” agreement.

Bland-Altman plots were constructed to qualitatively assess
the concordance between Somno-Art Software and the visual
scorer and evaluate overall device performance. To quantify
the bias, +95% CI and the lower and upper agreement limits of
the Bland-Altman, Design 3 of the NCSS software, which ad-
dresses multiple variables within-subject assessments, was
used (https://www.ncss.com/wp-content/themes/ncss/pdf/
Procedures/NCSS/Bland-Altman_Plot_and_Analysis.pdf). In
short, the mean difference corresponds to the mean of the
means and limits of agreement (LoA) calculation to the SD of a
difference that considers pooled estimates of the within-subject
and between-subject random errors, and the harmonic mean of
the replicate counts. Finally, confidence interval estimation for
LoA is based on the MOVER method, which provides adjusted
confidence intervals and is accurate for small to moderate
sample sizes. The Bland-Altman plots allow the visualization of
discrepancies and the interpretation of biases: a positive bias
indicates that the Somno-Art Software underestimated the ob-
served outcome while a negative bias indicates that the Somno-
Art Software overestimated the observed outcome.

EBE analysis.
Sensitivity, specificity, accuracy, and Cohen’s kappa coeffi-
cient of agreement « [25] were used to evaluate EBE agreement.
Sensitivity is defined as the ability to correctly classify PSG
sleep epochs, while specificity is defined as the ability to cor-
rectly classify wake epochs. Accuracy indicates the percentage
of epochs correctly labeled relative to PSG. k indicates the agree-
ment between the two hypnograms corrected for agreement due
to chance. These metrics were computed on each night before
evaluating the distribution on the whole dataset. The x score
scale was applied for evaluating agreement between recorders:
<0: poor; 0-0.20: slight; 0.21-0.40: fair; 0.41-0.60: moderate; 0.61-
0.80: substantial; 0.81-1: almost perfect agreement [25].
Confusion matrices represent EBE analysis by cross-
tabulating the agreement and disagreement between Somno-
Art Software and PSG visual scoring.

Results

Table 2 presents the mean + SD of each sleep architecture and
continuity descriptors obtained with Somno-Art Software and
visual scoring of PSG on the mean value of each subject (n = 246).

For the entire sample, the IRR, based on ICC values was “good”
for N3 sleep and “excellent” for all remaining sleep parameters

presented in Table 2. The healthy sub-group presents “excel-
lent” ICC for TST, SE, WASO, SL, LPS, REML, and wake, “good” for
N1 + N2 and REM sleep and “fair” for N3 and NREM sleep. For the
overall pathology dataset, “excellent” ICC was observed for TST,
SE, WASQO, SL, LPS, REML, N1 + N2, and REM sleep and “good” ICC
for N3 sleep. For OSA patients ICC of TST, WASO, REML, wake,
N1+N2, NREM, and REM sleep was “excellent”, while SE, SL, and
LPS had “good” ICC and N3 “fair” ICC. All the sleep parameters
of the insomniac and MDD patients had “excellent” ICC, except
REML and N3 with “good” ICC in both study groups.

Bland-Altman plots (Figure 1) and the specific bias, +95% CI of
the biases and the lower and upper LoA (Table 3) show the trend
for a possible under or overestimation of Somno-Art Software
compared to visual scorer. On the overall group, Somno-Art
Software overestimated SE by 2.07%, N1 + N2 by 5.24 min, N3 by
2.16 min, and REM sleep by < 3 min (on a mean TST of 369 min),
while SL and WASO were underestimated by less than 3 min and
8 min respectively.

In healthy subjects, Somno-Art Software underestimated
SE by < 2%, N1+N2 by 10.12 min, N3 sleep by 8.57 min, and SL
by < 1 min. Somno-Art Software overestimated REM sleep by
10.64 min and WASO by 8.42 min

In the patient group, SE was overestimated by 2.52%, N1+N2
sleep by 7.05 min, N3 sleep by 3.43 min, and REM sleep by <2 min.
Somno-Art Software underestimated SL by 2.76 min and WASO
by 9.60 min.

Table 4 illustrates EBE agreement measured with accuracy, k
coefficient, sensitivity, and specificity. Wake/sleep classification
ranges from accuracy of 82.8% for the OSA sub-group to an ac-
curacy of 93% for the healthy sub-group. k coefficient for wake/
sleep was moderate for OSA sub-group (k: 0.54) and substantial
for the other groups (k: 0.63-0.70). Sensitivity ranges between
88.9% (OSA patients) to 95.1% for the healthy sub-group, while
specificity was lowest for OSA patients with 64.5% and highest
for insomniac patients with 74.5%. For the four stages classifica-
tion (W/N1 + N2/N3/REM), accuracy was lowest for OSA patients
with 63.9% and highest for healthy patients 71.2%. k coefficient
was moderate for all studied groups.

The confusion matrices (Table 5) illustrate the percentage
agreement between Somno-Art Software and PSG visual scoring
for each sleep stage. For all study groups, confusions between
Somno-Art Software and PSG are mostly due to N1 + N2 sleep
misclassification and principally confusions with N3 sleep.
Misclassification mean between wake and REM sleep was <
10%. Sleep stage accuracy across the various studied groups was
>85% for wake, N3, and REM sleep, and between 68% and 73% for
N1 + N2 sleep.

Discussion

The results of the present study bring additional evidence for
using algorithms that combine heart rate and body movement
for scoring normal sleep in accordance to standard visual rules.
The present research further extends these results to the 2 most
common sleep disorders (chronic insomnia and OSA) as well as
to sleep of patients with MDD.

When considering all the investigated sleep parameters (TST,
SE, WASO, SL, LPS, REML, Wake, N1 + N2, N3, NREM, and REM
sleep), with the exception for N3 sleep in healthy and OSA pa-
tients and NREM sleep in healthy subjects where the ICC were
“fair”, the agreement between Somno-Art Software and PSG
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Table 2. Intra-class correlation coefficient between Somno-Art Software and PSG visual scoring

Subdivided in healthy and pathologies

All (n = 246) Healthy (n = 26) Pathologies (n = 220)

PSG PSG PSG Somno-Art

(mean + Somno-Art I1CCog nnvg (mean + Somno-Art I1CCog g (mean = (mean + ICCog g

SD) (mean + SD) (LowB) SD) (mean + SD) (LowB) SD) SD) (LowB)
TST (min) 368.5+72.8 378.6 + 69 091  (0.83) 4349 +26.2 426.9 + 25.6 0.88  (0.59) 360.6 + 72.6 3729+70.3 091 (0.87)
SE (%) 76.6 + 14.5 78.7 £13.3 0.90 (0.87) 90.7 £5.5 8954 0.88  (0.60) 75+14.4 77.5+135 0.89  (0.85)
WASO (min) 73.6 +49.8 65.9 + 42 0.84 (0.79) 33.3+20.9 41.7 +23.8 0.87  (0.58) 784 +50 68.8 +42.8 0.82  (0.76)
SL (min) 37.5+37.4 35+39.2 0.92  (0.89) 114 +10.4 11.1+7.6 0.94  (0.86) 40.6 +38.2 37.8 £40.5 0.90 (0.87)
LPS (min) 48.1+41.4 35.8+39.4 0.88  (0.76) 15.7 +13.5 11.3+7.7 0.81  (0.55) 519419 387407 086 (0.73)
REM L (min) 105.4 £ 55.5 98.9 +47.3 0.76  (0.69) 80.7 = 40 80.9 +29.6 0.9 (0.85) 108.4 + 56.4 101.1 = 48.7 0.75  (0.66)
Wake (min) 112.4 +69.3 102.2 + 63.1 0.90 (0.86) 447 +26.3 52.8+25.8 0.88  (0.60) 120.3 + 68.5 108 + 63.7 0.89  (0.84)
N1+ N2 (min) 217.7 +58.2 222.9+51.1 0.82  (0.77) 235.2 439 225 +28.8 0.71  (0.36) 215.6 £ 59.5 222.7 £53.2 0.84 (0.78)
N3 (min) 74.9 +46.2 77 £29.3 0.63  (0.53) 106.8 + 61.2 98.3+19.8 0.56  (-0.03) 711+ 427 74.5+293 0.64 (0.53)
NREM (min) 292.6 + 59.4 300 +55.1 0.87  (0.83) 342 +32.5 323.3+20.7 0.43  (-0.16) 286.8 = 59.1 297.2£57.3 0.87 (0.82)
REM (min) 759 +28.1 78.6 +24.8 0.82 (0.77) 92.9 226 103.6 +17.1 0.62  (0.14) 73.9+28 75.7 £23.9 0.82  (0.76)
Pathologies subdivided in OSA, insomniac, and MDD patients

OSA (n=30) Insomniac (n = 66) MDD (n = 124)

PSG (mean Somno-Art ICCyssipnnvg PSG Somno-Art ICCssipnavg PSG Somno-Art ICCssipnavg

+ SD) (mean + SD) (LowB) (mean + (mean + SD) (LowB) (mean + (mean + (LowB)

SD) SD) SD)

TST (min) 377.1+83.1 383.8 +105.1 0.90  (0.79) 3484 +62.9 358.1+54.9 0.90 (0.83) 363.1+74.2 378.2 £ 66.5 0.90 (0.84)
SE (%) 753+114 76.2 +14.7 0.74  (0.45) 72.8+13 749 114 0.90 (0.83) 76 +15.6 79.2 £ 14 0.90 (0.84)
WASO (min) 91.5 + 59.6 84.6 +61.4 0.82  (0.60) 83.2+£45.8 783+37.3 0.84 (0.73) 72.6 +49.2 59.7 £37.9 0.83 (0.73)
SL (min) 32+34.6 32.2+36.1 0.64  (0.22) 46.8 +37.4 419+314 0.95  (0.92) 39.3+39.2 37 +455 0.90 (0.86)
LPS (min) 484 +35.6 34.1+36.8 0.66  (0.26) 58.1+39 42.6 +32.2 0.90  (0.65) 494 +44.7 37.7 454 0.88  (0.78)
REM L (min) 105.8 + 60.3 99.3 +63.6 0.82  (0.62) 95.1 +45.1 96.4 + 40.9 0.72  (0.53) 116.1 +59.8 104.1 + 48.4 0.74 (0.62)
Wake (min) 123.5+61.5 116.8+71.4 0.77  (0.51) 130 £ 62.4 120.3 £ 54.6 0.90 (0.83) 1144 +72.9 99.4 +65.3 0.89  (0.83)
N1+ N2 (min) 249.2+754 234 +78.1 0.92  (0.82) 198.7 +50.1 210.9 + 47.5 0.75  (0.59) 216.6 + 56.6 226.2 +47.9 0.79  (0.69)
N3 (min) 56.8 +52.8 72.7 £31.6 0.59  (0.09) 75.8 +39.6 733£27.3 0.67  (0.45) 721+413 75.6 £29.9 0.63  (0.47)
NREM (min) 306 +62.4 306.7 + 86.3 0.86 (0.70) 274.4 + 49 2843 +44.4 0.86 (0.77) 288.7 £ 62.2 301.9 + 54 0.87  (0.80)
REM (min) 71+311 77.1+30.8 0.83  (0.64) 74 +23.1 73.8+216 0.75  (0.59) 74.5+29.8 76.3 234 0.84 (0.76)
ICCyspnigp 95% absolute agreement ICC; LowB, lower bound of ICC,,, , .- ICC cutoffs: 0-0.39: “poor” agreement; 0.40-0.59: “fair” agreement (yellow); 0.60-0.74: “good” agreement (light green); 0.75-1:

“excellent” agreement (green) [15].

TST, total sleep time; SE, sleep efficiency; WASO, wake after sleep onset; SL, sleep latency; LPS, latency to persistent sleep; REML, REM sleep latency.

showed “excellent” or “good” ICC in healthy, OSA, insomniac,
and MDD patients. Interestingly, healthy and OSA patients pre-
sent higher bias for N3 sleep than the other groups. A closer look
at the Bland-Altman plot shows that in the case of the healthy
group, the bias increases with longer N3 duration: Somno-Art
Software tends to underestimate N3 sleep for long N3 sleep dur-
ations (> 150 min). In OSA patients, who present with the lowest
mean N3 sleep duration (56.8 min), Somno-Art Software tends to
overestimate N3 sleep duration.

As expected from the sleep parameter analysis, EBE ana-
lysis achieves promising results. Sensitivity, specificity, ac-
curacy, and « coefficient of the overall dataset were 93.3%,
69.5%, 87.8%, and 0.65, respectively. Movement-based wear-
able devices, such as actimetry, often suffer from poor
specificity, with difficulties detecting calm wake periods.
A systematic review of the literature indicated that the spe-
cificity of actimetry ranges between 28% and 67% in healthy
population [26]. Somno-Art Software showed a higher speci-
ficity compared to actimetry on healthy subjects (mean spe-
cificity: 73.3%) and even on recording nights from patient
population (mean specificity: 69.2%). Compared to other algo-
rithm based on heart rate and wrist movements, Somno-Art
Software shows higher specificity in insomniac patients com-
pared to the algorithm evaluated by Kahawage et al. (74.5%
for Somno-Art Software vs. 45% by Kahawage et al. [27]), while
Fonseca et al. [28] showed similar performances to the present

results on a sample of patients with sleep disorders (69.2% for
Somno-Art Software versus 72.9% for Fonseca et al. [28]).

On four stages classification (W/N1 + N2/N3/REM), Somno-
Art Software presented an accuracy and «x coefficient of 68.5%
and 0.55 respectively on the overall dataset, a performance com-
parable to the heart rate-based algorithm evaluated by Radha
et al. [29] on a similar population: accuracy: 77%, k: 0.61.

Sleep stage accuracy was > 85% for wake, N3, and REM sleep.
These results are comparable or slightly above the IRR of visual
scorers for wake and REM sleep, but clearly exceed it for N3
sleep [4]. Visual scorers present the highest inter-rater variability
for the sleep stage N3, generally due to the complexity associ-
ated with the measurement of slow waves (SW) duration and
amplitude. In contrast, Somno-Art Software, as an automatic al-
gorithm, is consistent in its definition of SW and may therefore
yield more accurate results. Of note, the interpretation of the
confusion matrices is improved by taking the duration of the
sleep stage into consideration. In the case of wake, which repre-
sent 23.2% of the scored recording for the overall dataset, 69.5%
were correctly scored with the software, while 30.5% of waking
episodes were misclassified as sleep. But in parallel, only 6.5%
of sleep episodes, that represent 76.8% of the scoring, were mis-
classified as wake. Moreover, the overall accuracy of wake was
87.8%. To further illustrate this point, insomniac patients that
have more wake epochs (29.6%) overall as compared to the other
participant groups, present a higher wake sensitivity (74.5%).
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Figure 1. Bland-Altman plots for sleep efficiency, sleep latency, wake after sleep onset, N1 + N2, N3, and REM sleep. Bias and lower and upper LoA between PSG and
Somno-Art Software of the overall group are represented (n = 458). Black dots represent the healthy group (n = 79), green diamond OSA patients (n = 33), pink upward
triangle insomniac patients (n = 135), and blue downward triangle MDD patients (n = 211).

Similarly, N3 sleep represents only 15.5% of the scored recording
for the overall data set, and in consequence presents the lowest
score with only 64.1% epochs correctly scored. However, the
overall accuracy of N3 sleep is at 88.0%.

Somno-Art Software presents an average accuracy of 71.5%
for the discrimination of N1 + N2 sleep on the overall dataset.
Most misclassifications were observed between N1 + N2 and
N3 sleep. This finding is not surprising as N1 + N2 sleep rep-
resent the predominant sleep stage. Moreover, N1 sleep stage
has low inter-rater agreement even between human scorers [2,

4,17, 30], and as previously mentioned, confusion between N2
and N3 sleep stages is well known for visual scoring [4], as the
characterization of N3 sleep depends on the amount of SW also
present in N2 sleep [1].

Figure 2 exhibits examples of hypnograms obtained with PSG
and Somno-Art Software for healthy subjects, OSA, insomniac,
and MDD patients. Even if the sleep cycles and the sleep struc-
ture between N1 + N2, N3, and REM sleep are preserved with
Somno-Art Software for these four examples of sleep profiles,
Somno-Art Software’s hypnograms are less fragmented and
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Table 3. Bland-Altman plot biases, +95% CI of the biases, lower and upper agreement limits for Somno-Art Software versus PSG in the overall
group and in the sub-groups: healthy, pathologies, OSA, insomniac, and MDD patients

Bias + SD +95% CI of the biases Lower agreement limit Upper agreement limit
SE (%) All -2.07 +0.63 -3.30 to -0.85 -22.98 18.83
Healthy 1.68 +0.79 0.12 to 3.23 -7.27 10.62
Pathologies -2.52 +0.69 -3.87 to -1.17 -24.41 19.38
OSA -0.94 + 2.40 -5.64 to 3.76 -26.86 24.99
Insomniac -2.04 + 1.05 -4.10 t0 0.01 -22.16 18.08
MDD -3.15+0.92 -4.96 to 1.35 -24.89 18.59
SL (min) All 2.51+1.87 -1.16 to 6.17 -61.79 66.8
Healthy 0.37 +1.45 -2.47 to0 3.21 -18.89 19.62
Pathologies 2.76 +2.09 -1.33t0 6.85 —-65.60 71.12
OSA -0.18 + 8.16 -16.17 to 15.82 —89.95 89.6
Insomniac 490 +2.73 -0.45 to 10.25 -54.58 64.38
MDD 2.33+2.79 -3.15t0 7.80 -64.53 69.18
WASO (min) All 7.69 +2.43 2.92 to 12.45 -75.64 91.01
Healthy -8.42 +3.01 -14.32 to -2.53 —-45.94 29.1
Pathologies 9.60 + 2.67 4.37 to 14.83 -77.62 96.81
OSA 6.91 + 8.64 -10.03 to 23.85 -87.03 100.85
Insomniac 4.81 +4.62 -4.25 to 13.87 -84.58 94.19
MDD 12.83 + 3.46 6.04 to 19.61 -71.18 96.83
N1 + N2 (min) All -5.24 + 3.07 -11.26 to 0.79 -109.16 98.69
Healthy 10.12 + 8.23 -6.00 to 26.24 -81.62 101.86
Pathologies -7.05 +3.28 -13.48 to 0.62 -112.38 98.28
OSA 15.25 + 8.16 -0.74 to 31.24 -74.23 104.73
Insomniac -12.27 +6.12 —24.26 to -0.28 -123.07 98.52
MDD -9.67 +4.31 -18.11to -1.23 -113.46 94.13
N3 (min) All -2.16 +2.82 —-7.69 to 3.37 -92.53 88.2
Healthy 8.57 + 11.07 -13.12 to 30.27 -108.30 125.45
Pathologies -3.43 +2.87 -9.06 to 2.19 -89.92 83.05
OSA -15.9+9.90 —-35.30 to 3.50 -122.69 90.89
Insomniac 243 +4.63 -6.64 to 11.49 -75.89 80.74
MDD -3.54 +3.74 -10.86 to 3.78 -88.14 81.07
REM (min) All -2.75 +1.54 -5.77 t0 0.27 -56.02 50.52
Healthy -10.64 +4.29 -19.05to -2.24 -62.04 40.75
Pathologies -1.82 + 1.64 -5.03 to 1.40 -55.18 51.55
OSA —-6.08 + 5.07 -16.03 to 3.86 -61.20 49.03
Insomniac 0.14 +2.99 -5.72 t0 5.99 -54.51 54.79
MDD -1.83 +2.11 -5.96 to 2.31 -54.23 50.58

Table 4. Two stages accuracy, k, sensitivity, and specificity and four stages accuracy and « for the overall group and split by study groups

Wake/Sleep W/N1+ N2/ N3/REM

Classification Classification

Accuracy Kappa Sensitivity Specificity Accuracy Kappa
All (n = 458) 87.8% 0.65 93.3% 69.5% 68.5% 0.55
Healthy (n = 79) 93.0% 0.63 95.1% 73.3% 71.2% 0.57
Pathologies (n = 379) 86.7% 0.64 92.8% 69.2% 68.0% 0.54
OSA (n=33) 82.8% 0.54 88.9% 64.5% 63.9% 0.46
Insomniac (n = 135) 87.7% 0.70 93.2% 74.5% 69.8% 0.57
Depressed (n = 211) 86.6% 0.62 93.2% 65.8% 67.5% 0.53

« cutoffs: <0: poor; 0-0.20: slight; 0.21-0.40: fair; 0.41-0.60: moderate (yellow); 0.61-0.80: substantial (green); 0.81-1: almost perfect agreement [25].

switches between N1 + N2 sleep and N3 sleep are less frequent
compared to PSG, illustrating the lower performances of Somno-
Art Software in the estimation of N1 + N2 sleep.

Interestingly, these results indicate comparable scoring per-
formances of the Somno-Art Software in normal and patho-
logical sleep. It should be emphasized that, in contrast to the
results obtained with the Somno-Art Software, scoring patho-
logical sleep has consistently been found less reliable than
scoring normal sleep [2, 16, 17]. Indeed, sleep of patients often

presents a fragmented hypnogram and less obvious sleep stages
characteristics (K-complex, spindles, SW) than healthy subjects,
leading to higher variance in visual sleep scoring. In addition,
Rechtschaffen and Kales and subsequently the AASM sleep
scoring rules have been developed for healthy individuals and
may not adequately describe disturbed sleep [2]. Cardiac-based
sleep scoring algorithms are usually evaluated only in healthy
subjects [14, 19, 20, 31, 32]. Fortunately, recent studies are starting
to evaluate algorithms on patients suffering from sleep disorders
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Table 5. Confusion matrices between Somno-Art Software and visual scoring of PSG for the different study groups

All Somno-Art Software Accuracy OSA Somno-Art Software Accuracy
W N 1+ N2 N3 REM W N1 + N2 N3 REM
PSG W (23.2%) - 19% 4.7% 87.8% PSG W (24.9%) I iiliﬁ 32% 44% 83.1%
N1+ N2 (45.2%) 9.3% 9 8.9% 71.5% N1+ N2 (49.5%) 13.7% iili"ﬁ 10.2% 67.8%
N3 (15.5%)  1.5% = 32.7% b/ 88.0% N3 (11.7%)  4.9%  30.2% 7 88.6%
REM  (16.1%) 4.6%  240% 14% 89.8% REM  (13.9%) 7.2% = 281% 0.8% 88.7%
Healthy Somno-Art Software Accuracy Insomniac Somno-Art Software Accuracy
\Y N1+ N2 N3 REM \ N1+ N2 N3 REM
PSG w (9.6%) - 12%  3.7% 93.0% PSG w (29.6%) iilii 1.2%  4.4% 87.6%
N1+ N2 (51.4%) 7.1% 9 9.2% 72.9% N1+ N2 (40.5%) 9.7% 8% 72.8%
N3 (18.8%) 12% = 29.6% 0 86.3% N3  (15.1%) 0.8% = 33.6% “ 89.1%
REM  (20.2%) 27% = 182% 0.5% 90.2% REM  (14.8%) 51% = 259% 1.5% 90.0%
Pathologies Somno-Art Software Accuracy Depressed Somno-Art Software Accuracy
\W N1+N2 N3 REM W N1+ N2 N3 REM
PSG w (26.0%) - 1.9%  4.8% 86.7% PSG w (23.9%) “ 23% 52%  86.7%
N1+ N2 (43.9%) 9.9% 9 8.9% 71.2% N1+ N2 (45.2%) 9.3% 6% 70.8%
N3 (14.8%) 1.6% = 33.5% y 88.4% N3 (15.2%) 17% = 33.9% ﬂ 87.9%
REM  (15.2%) 5.1% = 256% 1.6% 89.7% REM  (15.7%) 48% = 250% 1.8% 89.7%

Values are normalized by row. Bold numbers correspond to agreement scores. Numbers under brackets correspond to the percentage of each sleep stage measured

with PSG.
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Figure 2. Example of hypnograms obtained with PSG (in black) and Somno-Art Software (in blue) for a healthy subject, an obstructive sleep apnea (OSA), an insomniac

and a MDD patient. W, wake.

[27-29] which is necessary to ascertain whether they fit with data
coming from patients with disrupted sympatho-vagal balance,
such as patients with OSA, insomnia, or MDD [33-35].

Limitations
Of note, the difference in the sample size of each study group
may lead to different statistical power and thus different levels
of precision. However, this concern is less relevant due to the
stated objective of this study which is to evaluate the perform-
ance of the software on the various study groups and was not
intended for a between groups comparison.

The analyzed data were already integrated in the learning
process of the algorithm and could present a bias in the

performances of the outcome of analysis. However, software
performances have been trained on large datasets (more than
600 nights, including data used for above results) and the tech-
nologies used for this sleep classification algorithm are resistant
to overfitting.

One current limitation of the ongoing version of Somno-Art
Software is the duration of the recording. Indeed, the Software
has been validated on recordings longer than 5 h and is therefore
currently inadequate for use with shorter recordings (e.g. nap).

Conclusion

The present study indicates that Somno-Art is a reliable tool for
the characterization of sleep architecture and continuity in both
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healthy subjects and patients with OSA, insomnia, or MDD. It
opens new insights to measure sleep at home, in a less invasive
and costly, and more time-saving way than the gold standard,
PSG. Somno-Art could for instance complement existing non-
attended techniques measuring sleep-related breathing pattern
or be a useful alternative to laboratory-based PSG when this
latter is not available.

Supplementary Material

Supplementary material is available at SLEEP Advances online.
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