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A B S T R A C T

Objective: The objective of the study was to evaluate the reliability of a new methodology for assessing
sleep architecture descriptors based on heart rate and body movement recordings.
Methods: Twelve healthy male and female subjects between 18 and 40 years of age, without sleep dis-
orders and not taking any drug or medication that could affect sleep, were recorded continuously during
five consecutive nights. Together with the standard polysomnography, heart rate was recorded with a
Holter and wrist movements by actimetry.

Of the 60 recorded nights, 48 artifact-free nights were analyzed by two independent and well-
trained visual scorers according to the rules of the American Academy of Sleep Medicine. Sleep stages
were assigned to every 30-s epoch. In parallel, the same nights were analyzed by the new methodology
using only heart rate and actimetry data, allowing a 1-s epoch sleep stage classification. Sleep architec-
ture was measured for 48 nights, independently for the two manual scorings and the automatic analysis.
Results: Over 42 nights, the intra-class correlation coefficient, used to assess the consistency or repro-
ducibility of quantitative measurements made by different observers, was classified as excellent when
all 12 descriptors were combined. Analyses of the individual descriptors showed excellent interclass cor-
relation for eight and good for four of the 12.
Conclusion: The automatic analysis of heart rate and body movement during sleep allows for the eval-
uation of sleep architecture and continuity that is equivalent to those obtained by manual scoring of
polysomnography. The technique used here is simple and robust to allow for home sleep monitoring.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In considering the future of sleep medicine, experts’ advice is
to incorporate telemedicine and remotemonitoring in future health-
care delivery. Thus, there is a growing interest in portablemonitoring
devices that are capable of assessing sleep characteristics reliably
in real-world settings such as one’s home. In the past few years, there
have been several systems or devices offered to monitor either sleep
and wake or sleep stages in more person-friendly, efficient, and eco-
nomical ways than the standard polysomnography (PSG). For this
purpose, wrist actimetry has been used for several decades in sleep–
wake rhythm research.

There are some benefits to utilizing actimetry in sleep re-
search: it is convenient to use, inexpensive, and can be used for

extended periods of time. There have been numerous studies to val-
idate the use of actimetry compared to PSG recordings [1–5]. Most
of these studies concluded that actimetry provides poor sleep onset
measure, generally by underestimating latency, as well as poor de-
tection of short awakenings, generally overestimatedwhen compared
to PSG. In addition, actimetry cannot provide measures of sleep
stages, sleep cycles, and REM sleep rhythmicity. Most of the time,
actimetry is limited to patients suffering from circadian rhythm dis-
orders and for the evaluation of total sleep time [1,4].

Some devices are more oriented toward the use of autonomic
variables which are often associatedwithmotor activity [6–10]. Thus,
over a 24-h period, heart rate and heart rate variability are mod-
erately influenced by the circadian clock but they appear to be sleep-
stage dependent [11]. Other devices use autonomic variables and/
ormotor activity togetherwith some limited electroencephalographic
(EEG) or electro-oculographic (EOG) recordings [12,13]. The use of
the latter is still subject to the same limitations of PSG recordings
in being unpractical and limited to night-time periods.
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In a recent review, Kelly et al. discussed the pros and cons of these
new devices based on their technical features [14]. With respect to
sleep monitoring, they underlined two major factors limiting the
scope of practical use: comfort and cost. They also stressed the dif-
ficulty of having a single algorithm applicable to various populations
and the necessity to store large amounts of data in a limited space.
In addition, most of these systems are yet to prove having any clin-
ical value without published validation reports in comparison with
PSG data. The authors remarked that gold standard laboratory PSG
is in itself imprecise as the inter-scorer reliability is approximate-
ly 85% on average. According to the authors, “this value sets an upper
limit on what can be expected of an automated algorithm.”

However, longitudinal home monitoring is certainly one of the
major advantages of portable monitoring devices. Such an ap-
proach not only allows the evaluation of the intrinsic sleep variability
from night to night but also the correlation of sleep with the
subject’s daytime activities or environmental exposure. In addi-
tion, it avoids the obvious limitations of PSG such as limited number
of successive recordings performed in an unfamiliar sleep
environment.

We have recently developed a methodology (Somno-Art meth-
odology, referred below as HMSS for ‘Heart rate andMovement Sleep
Stager’) which uses both 1-Hz heart rate data and wrist move-
ment values to score sleep and sleep stages. These basic data have
been recorded through an off-the-shelf recording system (Holter ECG
and wrist actimeter) during several 24-h periods. However, as a first
step, and because PSG recordings allowing comparisons were per-
formed only during the night sleep, results obtained during the
daytime period are not presented or discussed here.

2. Materials and methods

2.1. Participants

Twelve subjects (six males and six females) 18–40 years old were
recruited to participate in this study. All subjects were in good phys-
ical and mental health. None was on any drugs or medications that
could affect sleep. All subjects signed a written informed consent
that informed them about the nature and risks of the study. All sub-
jects received financial compensation for their participation.

2.2. Study procedure

The study protocol was subjected to critical review and it was
consistent with current knowledge of risks and benefits of the in-
vestigation, as well as with moral, ethical, and scientific principles
governing clinical research as set out in the Declaration of Hel-
sinki and the guidelines on Good Clinical Practice. The research
project was approved by the ethics commission Ärztekammer Berlin,
Friedrischstrasse 16, 10969 Berlin, on 26 March 2012.

Subjects stayed in the clinical research unit for five consecu-
tive days and nights andwere released after a follow-up examination
the morning after the last night. On the day of admission, the sub-
jects were wired to Holter-ECG equipment and a wrist actimeter
was attached. Holter-ECG and actimeter data were recorded con-
tinuously during the whole experiment (with the exception of the
time required for service and shower) while PSGs were per-
formed every night.

2.3. Measurements

2.3.1. PSG recordings
PSG was recorded using Compumedics GRAEL amplifiers using

Compumedics ProFusion PSG 3. Sampling rate was 512 Hz (optimal)
and 256 Hz (minimal) and only a high pass filter of 0.3 Hz was
applied (recommended by Compumedics to suit Grael DC record-

ing). The amplitude range (displayed, converted into EDF) for
electroencephalogram (EEG) was 2 mV (±80 μV, ±80 μV); 2 mV
(±250 μV, 80 μV) for electro-oculogram (EOG); 2mV (±125 μV, 80 μV)
for electromyogram (EMG), and 2 mV (±1 mV, ±1 mV) for electro-
cardiogram (ECG).

PSG recordings were performed for five consecutive nights over
8 h (within a typical time period between 23:00 and 07:00).

These recordings included five EEG leads used for the visual
scoring, according to the international 10–20 system: F4-M1, C3-
M2, C4-M1, O1-M2, and O2-M1; two EOG leads: E1-M1 and E2-
M1; two Chin EMGS: EMG1-EM and EMG2-EM; two ECG leads:
ECG1 and ECG2; one nose thermistor and one ambient noise
marker.

2.3.2. HMSS recordings
2.3.2.1. Actimetry. Non-dominant wrist activity was recorded using
an Actisleep+ (Actigraph LLC, 49 East Chase Street, Pensacola, FL
32502, USA) activity monitor. The acceleration data were sampled
with a 12-bit analog to digital converter at 30 Hz and stored in a
raw, non-filtered/accumulated format in the units of gravity (g). The
raw data were stored directly on the non-volatile flash memory of
the device and then subsequently downloaded using the Actilife 6
data analysis software (Actigraph LLC). Raw data were then fil-
tered and cumulated in 1-s comma-separated values files that were
used for sleep analysis using the HMSS methodology.

The wrist actimetry was measured through the vector magni-
tude of accelerations obtained every second in the three dimensions
of the space and its value is given in counts per second.

2.3.2.2. Holter ECG. A 12-lead Holter ECG (CardioMem CM3000 re-
corders, Getemed, Teltow, Germany) was used for monitoring over
24 h, including a break of approximately 1 h for service and sub-
jects’ personal care (eg, for taking a shower).

Digital signal acquisition was performed at 1024 Hz/12 Bit, and
then the times of the ECG R waves were extracted in the unit of
samples. Successive inter beat intervals (R–R intervals) were ex-
pressed in seconds.

The following equation was used to retrieve heart rate data from
R–R intervals:

HR RR in s= ( )60 .

2.4. Data processing

Precise synchronization between actimeter, Holter ECG, and PSG
recorder was required. Prior to each sleep recording, the internal
clocks of the three recording systems were synchronized. After-
ward, as the PSG also included ECG recordings, a visual inspection
was performed to detect any temporal gaps between the ECG trace
and the Holter ECG. All PSG recorded data were converted into Eu-
ropean Data Format (EDF) in order to be processed on a computer
screen for visual analysis [15]. They were scored by two indepen-
dent and experienced scorers, and sleep stages were assigned to
every 30-s epoch according to the American Academy of SleepMed-
icine (AASM) rules [16].

The primary data used by the HMSS software were 1 Hz heart
rate, derived from successive R–R intervals, and 1 Hzwrist actimetry.

Some occurring events such as cardiac arousals (sudden in-
crease in heart rate followed by a return to initial values) often
associated with occurring body movements (see Fig. 1) or changes
in steady state of average heart rate to higher or lower values are
detected and quantified.

At the same time, a Support Vector Machine (SVM) is used to
distinguish between REM and any other sleep stage, when re-
quired by the rule-based system. A cross-validation was made as
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follows: the SVM has been trained on six different nights (no more
than one night from any one subject) that were randomly
selected and tested on six other nights (nomore than one night from
any one subject) extracted from our database. The Gaussian kernel
was used (bandwidth parameter = 2.2; tradeoff parameter = 10). The
SVM was trained using the F-SVC algorithm [17]. The inputs fed to
the SVM are:

• The low-frequency power of the centered heart rate
(frequency < 6 mHz)

• The low-frequency power of the centered HR in the range [2,20]
mHz

• Themaximum amplitude of the HR spectrum in the range [0.20–
0.33] Hz

• The ratio of the maximum amplitude of the HR spectrum in the
range [0.20–0.33] Hz to the maximum amplitude of the HR spec-
trum in the range [0.15–0.20] Hz

The two last features are estimated using a 10th-order
autoregressive model of the HR on a 48-s moving window whose
parameters are estimated by simultaneous minimization of the
forward and backward prediction error.

During the training phase, the input vectors corresponding to
sleep stages are only used, while wake was excluded. The target is
the combination of reference hypnograms (codebook: REM in PSG
A or PSG B = +1; other sleep stages = −1).

The output of the SVM is low pass filtered to reduce the output
variability. An example of the results obtained is shown in Fig. 2.
After applying a threshold to this curve, we obtain the binary curve
(decision function) that is used to evaluate the performance of the
REM/non-REM classifier (in this example, the probability of good

classification was 0.8906). In this particular case, the first high REM
probability seen at the beginning of the night was not considered
as being in contradiction with the rules. As can be seen, this
REM/non-REM classifier can be used all night long to detect REM
episodes.

In our algorithm, the SVM output is first computed on the whole
night. The SVM output (REM/non-REM probability) is used only if
required by a rule-based system.

Then, taking into account the dynamics of the occurring events,
the amplitude of the heart rate changes calculated over different
period lengths, and the REM/non-REM probability, a set of more than
40 rules is applied to generate the sleep stage classification (see
Fig. 3).

In using this process, HMSS final scoring is performed every con-
secutive 1-s epochs during the night. The basis of the methodology
used by the software has resulted in an international patent filed
in 2012 (PCT/EP2012/059074). However, several of the rules used
here are not disclosed as they are proprietary.

The usual statistical descriptors of sleep architecture and con-
tinuity are sleep and REM latencies, amounts of various sleep stages
in minutes, and the number of awakenings. From these measures,
complementary variables such as sleep efficiency and number of
sleep cycles are derived. Therefore, the architecture of sleep was
evaluated by using the following measures and in accordance with
the AASM modified scoring rules:

• Sleep Onset Latency (SOL): elapsed time between light out time
and the first occurrence of any sleep stage other than stage
W.

• REM sleep Latency (REML): elapsed time between sleep onset and
the first occurrence of REM sleep.

Fig. 1. Examples of cardiac arousals associated (A) or not associated (B) with body movements.
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• Wake After Sleep Onset (WASO): cumulative time of wake epi-
sodes occurring between sleep onset and lights-on time.

• Time spent in each sleep stage: cumulative time spent in each sleep
stages (N1, N2, N1 + N2, N3, or REM sleep) between sleep onset
and lights-on time.

• Total Sleep Time (TST): cumulative time spent in N1, N2, N3, and
REM sleep from sleep onset to lights-on time.

• Sleep Efficiency Index (SEI): ratio of total sleep time to time in bed.
• Number of awakenings (NAW): number of wake episodes ex-
ceeding 15 s, between sleep onset and lights-on time.

• Number of Sleep Cycles (NSC): a sleep cycle was defined as the
elapsed time between sleep onset and the end of the first
REM sleep phase (first cycle) or the end of one REM sleep
phase to the end of the following REM sleep phase (second
and following cycles). A REM sleep phase can be constituted by
several REM sleep episodes. Two successive REM sleep epi-
sodes were considered as parts of the same REM sleep phase
when they were separated by less than 20min of any other sleep
stage [18].

2.5. Statistical analyses

To demonstrate consistency among the two manual scoring
methods and the HMSS methodology, a two-way mixed interclass
correlation coefficient (ICC) model, where subject effects are random
and rater effects are fixed, to assess the inter-rater reliability (IRR)
was utilized [19].

ICC, one of the most commonly used statistics for assessing IRR
for ordinal, interval, and ratio variables, is a suitable statistic for as-
sessing consistency or reproducibility of quantitative measurements
between two or more raters or rating methodologies of the same
quantity. The ICC incorporates the magnitude of the disagreement
to compute IRR estimates, with larger-magnitude disagreements re-
sulting in lower ICCs than smaller-magnitude disagreements. An ICC
estimate of 1 indicates perfect agreement (ie, changing in the same
direction for the values being evaluated or directional) and 0 indi-
cates only random agreement (values increase by one method and
decrease by another method, non-directional). Cicchetti [20] pro-
vides commonly cited cutoffs for qualitative ratings of agreement
based on ICC values, with IRR being poor for ICC values less than
0.40, fair for values between 0.40 and 0.59, good for values between
0.60 and 0.74, and excellent for values >0.74.
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Fig. 2. Representation of the filtered continuous SVM output. The two upper curves (A and B) represent the PSG hypnograms of a night of the test set. The dashed-dotted
line is the filtered output of the SVM. After applying a threshold to this curve, we obtain the binary curve (decision function) that is used to evaluate the performance of
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The assessment of the ICC was based on the assumption that
ratings from multiple raters for a set of parameters collected from
multiple subjects are composed of a true score component and
measurement error component. The model can be written using the
Mixed Factorial Design in the form:

X r c rc eij i j ij ij= + + + +μ

where Xij is the rating provided to subject i (random) by rater j
(fixed); μ is the mean of the true value for variable X; ri is the de-
viation of the true value from the mean for subject I; cj represents
the degree that rater j systematically deviates from the mean; rcij
represents the interaction between subject deviation and rater de-
viation; and eij is the measurement error.

The ICC was calculated based on all three rating methods in-
cluded in mode l. When the lower bound of the 95% confidence
interval of the ICC resulted in a fair IRR based on the classification
above, ICC values were computed for all pairwise comparisons to
identify the possible causes for the low IRR.

The ICC was also calculated separately for each of the five nightly
recordings but as the sample size was 8–11 subjects per night based
on valid artifact-free nightly recordings, only the lowest and highest
ICC values (range) are presented in Table 1.

All statistical analyses were performedwith SPSS version 22 (IBM
Corporation).

3. Results

Table 1 presents the results obtained on a subgroup of 42 nights.
These nights correspond to 48 artifact-free nights of the total 60
recorded nights (with a range of 8–11 valid cases per night) minus
the six nights used for the training of the cross-validation of the
SVM. The artifacts were primarily due to missing heart rate values
for extended and repeated periods during the night. For these 48
nights, PSGs were manually scored by two independent scorers (A
and B) while the heart rate and wrist movements were automati-
cally analyzed by the HMSS methodology.

Following each scoring process, sleep architecture was calcu-
lated and a comparison was performed in order to evaluate the three
sleep evaluation results (Table 1). Table 1 presents the averaged
values of each sleep architecture and continuity descriptors ob-
tained for the three scorings calculated from the twomanual scorings
(PSG A and PSG B) and the automatic HMSS scoring.

The overall ICC for all descriptors combined was excellent in the
comparisons of PSG A vs PSG B (0.996), HMSS vs PSG A (0.991),
and HMSS vs PSG B (0.988). Among the 12 descriptors considered
in these analyses, eight showed an ‘excellent’ IRR (ICC > 0.74). Ex-
cellent IRR based on observed ICC valueswere noted for sleep latency,
REM sleep latency, Wake After Sleep Onset, amount of stage N3,
amount of REM sleep, Total Sleep Time, Sleep Efficiency, and Number

Table 1
Intraclass correlation coefficient (ICC) between the three analyses of the sleep descriptors (N = 42).

PSG A
Mean
(SD)

HMSS
Mean
(SD)

PSG B
Mean
(SD)

ICC (all three scorings)
(lower bound)
ICC rangea

ICC (two scorings only)

Sleep latency (min) 10.3
(8.4)

8.7
(7.2)

9.1
(7.7)

0.952***
(0.920)
0.876–0.990

REM latency (min) 69.4
(36.3)

62.1
(26.8)

74.7
(41.3)

0.764***
(0.605)
0.600–0.940

WASO (min) 31.1
(32.9)

38.9
(36.1)

27.2
(29.9)

0.958***
(0.930)
0.762–0.993

Stage N1 (min) 25.6
(8.0)

28.5
(9.3)

49.5
(24.7)

0.652**
(0.419)
0.433–0.748

PSGA vs PSGB: 0.576*
PSGA vs HMSS: 0.699**
PSGB vs HMSS: 0.499*

Stage N2 (min) 240.2
(27.7)

235.0
(37.8)

229.2
(26.3)

0.699**
(0.498)
0.273–0.917

PSGA vs PSGB: 0.861***
PSGA vs HMSS: 0.568*
PSGB vs HMSS: 0.411*

Stage N1 + N2 (min) 265.8
(30.8)

263.4
(39.6)

278.7
(38.2)

0.731**
(0.494)
0.528–0.902

PSGA vs PSGB: 0.895***
PSGA vs HMSS: 0.545*
PSGB vs HMSS: 0.452*

Stage N3 (min) 66.1
(27.3)

71.8
(36.3)

72.8
(32.5)

0.787***
(0.645)
0.267–0.867

REM sleep (min) 106.3
(22.7)

96.5
(24.7)

91.8
(23.3)

0.877***
(0.794)
0.647–0.952

TST (min) 438.2
(33.2)

431.8
(34.9)

443.3
(29.7)

0.953***
(0.922)
0.826–0.990

Sleep efficiency (%) 91.4
(6.8)

90.1
(7.3)

92.4
(6.1)

0.952***
(0.920)
0.820–0.990

Number of awakenings 14.1
(6.3)

14.7
(4.0)

20.6
(9.9)

0.768***
(0.612)
0.569–0.871

Number of sleep cycles 5.2
(0.8)

5.5
(0.9)

5.2
(0.9)

0.662**
(0.436)
0.323–0.930

PSGA vs PSGB: 0.931***
PSGA vs HMSS: 0.222
PSGB vs HMSS: 0.335

a Lowest to highest ICC values when analysis performed separately for each of the five nightly recordings.
Commonly-cited cutoffs for qualitative ratings of agreement based on ICC values [20]: poor for ICC values < 0.40; fair for 0.40 to 0.59 (*); good for 0.60 to 0.74 (**); excel-
lent ≥ 0.75 (***).
Boldface numbers correspond to main ICC values obtained from the test.
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of awakenings. The four remaining descriptors showed a ‘good’ IRR
(ICC values between 0.60 and 0.74). These were noted for the amount
of stages N1, N2, N1 + N2, and number of sleep cycles.

Sleep Onset Latency was very similar between the three methods
with very high ICC (ICC = 0.952). The mean REM sleep latency was
shorter with HMSS by 7 min than with PSG A and by 12 min than
with PSG B. However, the IRR was ‘excellent’ (ICC = 0.764) between
the three methods as these differences were mainly due to a few
nights, and the scoringmethods were consistent and directional over
such nights. The mean time spent in WASO was similar between
the three methods with an ICC value of 0.958.

Themean time spent in N1was similar between PSG A (25.6min)
and HMSS (28.5 min) while it was quite different with PSG B
(49.5 min). Pairwise comparison revealed ‘good’ IRR for PSG A vs
PSG B (ICC = 0.604) and PSG A vs HMSS (ICC = 0.699), while IRR was
‘fair’ for the PSG B vs HMSS (ICC = 0.499).

The mean time spent in N2 was similar between the three anal-
yses (PSG A = 240.2 min; HMSS = 235.0 min; PSG B = 229.2 min).
However, ICC was excellent for the comparison PSG A vs PSG B
(ICC = 0.861), ‘fair’ for the comparison PSG A vs HMSS (ICC = 0.568),
and ‘poor’ for the comparison PSG B vs HMSS (ICC = 0.411).

Such findings suggest non-directional differences between PSG
B and HMSSwhere assessed values by the two scoringmethods were
randomly higher in some cases and lower in others. The average
values show that the increase in time spent in N1 was partly com-
pensated for by a decrease in time spent in N2 for the PSG B analysis.

Therefore, we calculated the ICC for N1 +N2. The cumulated time
spent in these two stages was higher for PSG B (278.7 min) than
for PSG A (265.8 min) and HMSS (263.4 min). The ICC value for the
three scorings was ‘good’ (0.731) while it was ‘fair’ for the com-
parisons PSG A vs HMSS (0.545) and PSG B vs HMSS (0.452), and
‘excellent’ for the comparison PSG A vs PSG B (0.895).

The mean time spent in N3 was similar between the three anal-
yses (PSG A = 66.1 min; HMSS = 71.8 min; PSG B = 72.8 min) and the
IRR was ‘excellent’ (ICC = 0.787).

Themean time spent in REM sleep was similar between the three
analyses (PSG A = 106.3min; HMSS = 96.5min; PSG B = 91.8min) and
here again the IRR was ‘excellent’ (ICC = 0.877).

Similarly, TST and sleep efficiency were similar between the three
methods and the IRR was in both cases ‘excellent’ (TST: ICC = 0.953;
sleep efficiency: ICC = 0.952).

The mean number of awakenings was higher with PSG B (20.6/
night) than with PSG A (14.1/night) and with HMSS (14.7/night).
However, the overall IRR was ‘excellent’ for this descriptor
(ICC = 0.768).

For number of sleep cycles, the mean was slightly higher with
the HMSS analysis (5.5) than with the two manual methods (PSG
A = 5.2; PSG B = 5.2) and the ICCwas ‘good’ (0.662). The detailed com-
parisons showed that the ICC was ‘poor’ for both PSG A vs HMSS
(0.222) and PSG B vs HMSS (0.335), and ‘excellent’ between PSG A
and PSG B (0.931).

In addition, as the manual scoring was made every 30-s epoch
of the PSG recordings and HMSS scoring was made every 1-s epoch,
the latter was converted into transformed HMSS 30-s epochs in order
to compare the two scoring methods. In doing so, a subsequent vari-
ability was introduced into this comparison. The global ‘page by page’
agreement between HMSS and the manual scorer A was of 73.3%,
while it was 74.9% between the manual scorer B and HMSS and 88%
between the two manual scorers (see Table 2).

An example of corresponding hypnograms for one single night
is presented in Fig. 4.

4. Discussion

The use of EEG to score different stages of sleep started in the
first half of the last century [21]. The polysomnographic approach

was then developed and sleep scoring rules were adopted by the
sleep community [16,22]. Although origin and functions of the dif-
ferent stages of sleep are still debated, it is obvious that brain waves
collected on the skull are just local outputs reflecting the changes
in brain states. These brain states clearly affect other systems such
as motor activity [23] and sympathetic and parasympathetic cardiac
regulation [24].

As previously mentioned, actimetry underestimates sleep onset
latency, has poor detection of short awakenings, which are often
overestimated when compared to PSG measures, and it cannot
provide measures of sleep stages, sleep cycles, or REM sleep rhyth-
micity. However, detecting a body movement can be useful in the
determination of the probability of observing a transition from N2
to N3 or from N2 to REM [25]. We also know that small move-
ments can be observed in REM sleep, while large movements are
generally followed by transitions from a deeper to a lighter sleep
stage or to wake [26].

Similarly, heart rate alone does not provide details of the sleep
structure, although several attempts have been made to test it. The
spectral analysis of heart rate variability allows distinguishing
between low and high frequencies (LF and HF, respectively) and they
are used in sleep studies to quantify the modulation of sympathet-
ic and parasympathetic actions of the autonomic nervous system
[27,28]. A few studies have been conducted to investigate the in-
terrelations between heart rate variability and the sleep EEG [29,30].
Among different measures extracted from the heart rate variabil-
ity, the LF/HF ratio provides an indirect measure of sleep
fragmentation [31].

However, combining the measure of motor activity together with
heart rate could be a possible way of exploring the dynamics of sleep.
These two variables are often related as major movements are ac-
companied by heart rate accelerationswhich ceasewhenmovements
stop. But heart rate modifications can occur independently of move-
ment occurrences. They can be changes in average values, variability
amplitude, or rhythm regularity. All these modifications can bemea-
sured by specific calculated parameters. Therefore, we made the
hypothesis that changes of sleeping brain stages could be ex-
plored as well by looking simultaneously at the heart rate variations
and the occurring body movements.

In our analysis, specific rules were used to determine the chances
of being in a specific sleep stage as well as the time and type of tran-
sition from one stage to another. These rules, based on the knowledge

Table 2
Matrices of confusion between the two manual and the HMSS scorings (cumu-
lated values over the 42 nights). (Global scores between PSG A and HMSS = 73.3%
and between PSG B and HMSS = 74.9%.)

nPages PSG A pages

W N1 N2 N3 REM

3656 1816 20388 5474 8934

HMSS pages W 4000 76.7% 19.5% 2.9% 0.3% 2.5%
N1 2392 9.4% 51.9% 3.9% 0.3% 3.2%
N2 19736 9.6% 17.0% 76.3% 26.1% 23.3%
N3 6033 0.2% 0.5% 9.8% 72.2% 0.7%
REM 8107 4.1% 11.1% 7.0% 1.1% 70.2%

nPages PSG B pages

W N1 N2 N3 REM

3376 3017 19973 5829 8073

HMSS pages W 4000 83.0% 17.6% 2.6% 0.2% 1.8%
N1 2392 6.3% 42.8% 3.5% 0.5% 1.9%
N2 19736 6.8% 20.0% 78.9% 23.4% 22.0%
N3 6033 0.4% 0.7% 7.9% 74.8% 0.7%
REM 8107 3.5% 19.0% 7.0% 1.1% 73.6%

Boldface numbers correspond to full agreement scores.
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accumulated over more than 50 years of polysomnography prac-
tice by the first author of this paper, used the REM/non-REM sleep
stage probability and sudden occurring events such as body move-
ments or cardiac arousals as well as changes in heart rate averages
or variability ranges. As an example of one rule, a body movement
associated with a cardiac arousal occurring in N3 leads to a tran-
sition to a lighter stage of sleep or to wake, depending on the
duration of the movement and the amplitude of the cardiac arousal.
As another example, any occurring body movement delays the tran-
sition from N2 to N3 by several minutes (depending on the sleep
cycle) while it does not block the transition from N2 to REM after
a delay of 1min [25]. Similarly, sleep onset occurs when the average
heart rate shows a sustained drop without any simultaneous body
movement occurring during the last fewminutes. At the end of this
rule application step, the sleep stage classification is obtained and
the sleep architecture and continuity descriptors are calculated from
the final hypnogram (see Fig. 3).

The results presented here show that scoring sleep stages with
algorithms and pre-established rules applied to heart rate dynam-
ics and wrist movements produces sleep architecture and continuity
descriptors that are consistent with those obtained with manual-
ly scored PSG. Among the 12 sleep descriptors whichwere compared,
eight showed ‘excellent’ IRR between the three scoring methods,
while the four remaining descriptors (time spent in N1, N2, and
N1 + N2, and number of sleep cycles) showed ‘good’ IRR only. It is

important to note that the decreased ICC value for times spent in
N1 and N2 were mainly due to differences between HMSS and only
one of the PSG analyses (PSG B). Further exploration of this finding
revealed that for PSG B analysis, the increase in time spent in N1
was in part compensated for by a decrease in time spent in N2 and
also in REM sleep. The consistency between the sleep architecture
and continuity descriptors associated with manual scorings of PSGs
and the automatic HMSS system can be seen in Fig. 4, showing the
hypnograms scored from one single night by the three methods.

Manual sleep stage scoring is a time-consuming subjective
process with inter-scorer and even intra-scorer variability. The inter-
scorer variability depends on the experience and the rule adherence
of the manual scorers [32,33]. An average value of approximately
85% is generally given [16] but its variation is large and ranges from
76% to 88% [34,35]. In the present study, the average value of inter-
scorer agreement (88%) was globally within the same range. The
intra-scorer agreement is also quite revealing; it is generally thought
to be above 95% but lower percentages such as 83% have also been
reported [34]. Such intra-scorer variability is obviated with an au-
tomated system like HMSS where repeated analyses give identical
results.

Differences in sleep scoring are generally due to periods with
unclear EEG and EOG signals, and in most cases these are periods
which confound between stages N1 and N2 or between stage N1
and REM sleep. In the latter case, background EEG is quite similar
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and what distinguishes them most is the presence of either slow
eye movements (stage N1) or rapid eye movements (REM sleep).
However, the latter are not continuously present in REM sleep as
they appear in bursts, and therefore, there may be several consec-
utive 30-s epochs during REM sleep with no rapid eye movement
occurring [36]. Precise distinction between these sleep stages re-
quires careful monitoring of both EEG and EOG traces, which is not
always possible outside of the sleep laboratory.

A major reason for scoring difference is the artificial cutting into
successive 30-s epochs. The occurrence of a remarkable sign (first
K-complex or spindle, first burst of rapid eye movements, etc.) has
to be located within the epoch. However, if this change occurs close
to the middle of the epoch, one can qualify this epoch as a contin-
uation of the stage given to the previous epoch or qualify it as a new
sleep stage. Therefore, some approximation in the clinical evalua-
tion of the sleep architecture and continuity descriptors gets
introduced.

For this reason, HMSS scoring was developed to use 1-s con-
secutive epochs. This was facilitated by the fact that based on
instantaneous heart beat values and movement recorded every
second, HMSS scoring method is not dependent on ratios between
amounts of brain wave activities, compared to PSG scoring, to de-
termine a sleep stage such as in the case of the transition from N2
to N3. Therefore, HMSS scoring is more precise and due to its ra-
pidity, the processing time is not much affected.

By converting 30 independent 1-s epochs into a single 30-s epoch
(simple majority rule), an artificial variability was introduced, and
a precise time-synchronization between the new 30-s epochs of
HMSS and the corresponding 30-s manual scoring epochs was not
always guaranteed. However, as the page to page agreement between
independent scorers constitutes a traditional way to compare those
methods, we performed it too. As an example, the confusion ma-
trices between the HMSS scoring and the two PSG scorings are
presented in Table 2. These matrices were calculated over a total
of 40,268 30-s epochs included in the 42 nights. They reveal that
themain differences are related to the confusion between REM sleep
and stages N1 and N2. The mean overall agreement between HMSS
sleep stage scoring and themanual scorings was lower than the inter-
scorer one (73.3% between PSG A and HMSS, 74.9% between PSG
B and HMSS against 88% between the two manual scorings). Fig. 5
shows the repartition of correct and incorrect HMSS classification
compared to the PSG ones. From this figure it appears that global-
ly in 78% of the cases the HMSS classification is in agreement with
both or at least one of the two manual scorings. It has to be un-

derlined that in 2% of the cases, there is no agreement between any
of the three scorings.

As such, HMSS overall agreement was higher than the value of
65.4% obtained in normal subjects by Hedner et al. [8] using the anal-
ysis of autonomic signals from an ambulatory recording system. In
their case, stages N1 and N2 were grouped in a single sleep stage
called ‘light sleep’. Therefore, it could be hypothesized that their
overall agreement value would have been somewhat lower if they
would have distinguished N1 from N2. HMSS overall agreement can
also be compared to the epoch-by-epoch inter-site agreement
between large samples of visual scorers, ranging from 71% to 76%
[37,38].

It has been shown that manual sleep staging is less reliable when
sleep is highly fragmented [37,38]. This is one of the criticisms of
the usual classification in time-locked epochs. It has been pro-
posed to use adaptive segmentation of the epoch duration in order
to give a better representation of this phenomenon [39]. Thus, the
rigid constraint of 30-s epochs could be avoided and sleep stage
would begin or end at more precise times. This would give a more
accurate representation of the sleep structure. However, scoring by
30-s pages instead of much shorter ones reduces the number of sleep
stage changes and saves a lot of scoring time. Depending on the ex-
perience of the scorer, scoring time can vary considerably from less
than 30 min with experienced scorers and good quality record-
ings to 2 h. A mean value of 1 h 15 min to 1 h 20 min has been
reported for experienced scorers [34].

Considering the above, it is important to stress that there are no
intra-scorer reliability concerns when using HMSS software as the
algorithms used are not subject to change over the scoring dura-
tion. In addition, a full-night sleep scoring and its subsequent
calculation of the sleep architecture is performed in less than 1min.
These are valuable advantages given the fact that the simplicity and
ease of the recording system make sleep evaluation possible any-
where and for any number of successive nights.

Although the heart rate and body movement data were re-
corded continuously, including daytime, only the night-time period
has been analyzed. In fact, the data collected during the daytime
were limited to the sole heart rate and wrist movements. During
this period, subjects were not maintained in their bed, they were
not allowed to nap, they were moving around in the experimental
facilities, and therefore, it was not possible to record a PSG simul-
taneously. Thus, it was not possible to compare PSG sleep scoring
data to HMSS scoring during daytime. This is why, in this prelim-
inary study, we have not considered the data collected during

Classification
repartition

I. (69%)

II. (4%)

III. (5%)

IV. (2%)

V. (19%)
I. HMSS = PSG A
   HMSS = PSG B

II. HMSS = PSG A 
    HMSS  PSG B

III. HMSS  PSG A
     HMSS = PSG B

IV. HMSS  PSG A
     HMSS  PSG B
     PSG A  PSG B

V. HMSS  PSG A
    HMSS  PSG B
    PSG A = PSG B

Fig. 5. Repartition of correct and incorrect sleep stage classification of HMSS compared to PSG A and PSG B.
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daytime, as our first objective was to score sleep stages and compare
the sleep architecture obtained by this method with the one ob-
tained from the PSG. In a further step, we shall be considering the
possible occurrence of napping or extended low vigilance periods
by applying the same approach.

4.1. Current study limitations

The accuracy of the classification has been tested in normal adult
subjects’ recordings only. We are fully aware that this sleep scoring
method will need to be tested in sleep-disordered patients. There-
fore, our next step will be testing HMSS in OSAS patients as well
as in patients suffering from insomnia or patients exhibiting peri-
odic leg movements. We also make the assumption that it will not
be possible to explore patients with autonomic dysfunction or heart
rate abnormalities by the same method.

5. Conclusion

The results presented in this study show that scoring sleep stages
from heart rate dynamics and wrist movements produces sleep ar-
chitecture and continuity descriptors that are consistent with those
obtained with manually scored PSG.

If we consider that results obtained by the two systems are equiv-
alent, themain advantages of using HMSS system in healthy subjects
are quite obvious. Recording heart rate and body motility is much
easier than recording polysomnography and it can be performed
without the intervention of any specialized staff, in any environ-
ment and repeatedly for several nights. In addition, the processing
of sleep stage scoring and the calculation of the sleep measures is
shorter than 1 min. Therefore, the HMSS system can be seen as a
complementary way of exploring normal sleep to the classical PSGs,
especially in the home and for repeated nights.
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